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On the drift in stochastic mechanics 

Ian M Davies 
Department of Mathematics and Computer Science, University College of Swansea, 
Singleton Park, Swansea SA2 SPP, U K  

Received 12 January 1989 

Abstract. For a large class of Hamiltonians we express the stochastic mechanical drift in 
terms of a solution of the classical equation of motion and comment on the use of It6 
equations to study how quantum mechanics approximates classical mechanics. 

1. Introduction 

We consider the Schrodinger equation for a particle in the presence of both a scalar 
and vector potential, choosing our units so as to only retain h explicitly: 

where p (h/i)V and v(x,O) = tpo(x). For Hamiltonians that are no more than 
quadratic in position and momentum we have from the classical theory that the 
expected value of position ( q )  satisfies the classical Newton equation. If in the above 
A = i B  A q and V = i q T C 2 q  then we have 

(4 )  = -B A ( 4 )  - C'((0. 

When one considers other Hamiltonians one obtains an equation of motion for ( q )  
which one can believe to be, for small h, approximately equivalent to the corresponding 
Newton equation. For a class of Hamiltonians that are anharmonic, Truman (1975) 
and Elworthy and Truman (1981) have shown that in a particular sense quantum 
mechanics tends to classical mechanics as h tends to zero. We explore Nelson's 
stochastic mechanics (Nelson 1985) with a view towards obtaining better information 
on how quantum mechanics tends to classical mechanics as h tends to zero. In stochastic 
mechanics we construct a diffusion process in association with the Schrodinger equation 
and a particular wavefunction y;. If tp exp(R + is) then the diffusion x, is governed 
by the It6 equation 

dx, = [h(VR + VS) - A ] d t  + f i d e ,  

where B, is a Brownian motion. The density of x, is exp(2R) with respect to the usual 
Lebesgue measure. The diffusion process is continuous, so can we say something about 
the manner in which x, tends to qcl(t) as h tends to zero, where qcl(t) is some solution of 
the Newton equation of motion? What can we say about the variance of x, as h tends 
to zero or as t tends to infinity? Recall that the variance is difficult to compute from 
the point of view of the classical approach. To this end we concentrate on clarifying 
the nature of the drift A(VR + VS) - A in the It6 equation for the diffusion process xt .  
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2. The nature of the drift 

Let us consider the large class of Hamiltonians that are at most quadratic in position 
and momentum for which the quantum mechanical propagator is expressible in terms 
of the classical action alone (Davies 1985). If G b , x , t )  is the propagator for the 
Schrodinger equation (ihdlzlt - H)v = 0 then 

wcv, t) = s,. Gcv, x, t)WO(X) dx 

where G b ,  x, t )  has the representation 

112 
(2nih)-'12 J - 2 2 ~ c , @ ,  x, t ) / d y j 2 x k l  exp (is,,cv,x, t ) / t t )  

S,, (y ,x, t )  being the classical action for a particle moving from x at time 0 to y at time 
t .  We consider t sufficiently small to ensure that there is but one classical path between 
x and y .  For this particular class of Hamiltonians the term preceding the exponent is 
independent of x and y .  We choose the wavefunction yo@) to be 

tpo(x) = N - '  exp (-n(x - p ) 2 / 2 ~  + iu  . x / h )  

where the constant N ensures that the wavefunction is normalised in L2(Rfl)  so as to 
have the quantum mechanical representation of a particle with position p and canonical 
momentum U. It must be stated that for this class of Hamiltonians one can by dint of 
sheer hard work calculate exactly the expressions to be obtained herein. One will not, 
however, obtain their nature as will be demonstrated when we consider two simple 
examples. We now proceed to calculate the exponent of vb,t), as this will give us the 
drift. The calculation is straightforward but one must take advantage of the fact that 
S, ,@,  x, t) is no more than quadratic in y and x. We express S,, in terms of qcl(t), which 
is the classical path satisfying qcl(0) = p and p,,(O) = U, to get the expression 

SClcv,X, t )  = ~,,(4,l(t)l I( ,  t )  - U T @  - P I  +P,l(tITCV - qc,(t)) 

+ t [cv - 4cl(t))TS,,cv - 4,l(t)) + 2cv - 4cl(t))TS:y(X - p)  

+ (1 - Pu)T's,,(x - P ) ] .  

We have used the notation (Sy)>),k = d2S,, / i?yi2yk,  etc. Substituting z for x - p, the 
exponent in the integrand for calculating tpb, t) becomes 

(i/fi) [~,,(4cl(t)3P, t )  +P,dt)Tcv - 4c,(t)) + uTIC + $CY - 4cl(t))TS4.Ycv - 4,,(t))]  

+ zT [(-ww + ( i / 2 ~ ~ , ]  z + ( i / ~  [s,@ - qcl(t))lT Z. 

After performing the integration in z we are left with the exponent in v,@,t) as 

(i/h) [SCl(4,,(t),C(, t) +P,l(t)Tcv - 4,l(t)) + UTF + ;cv - 4cl(t))TSl.ycv - 4cl( t ) ) ]  

+ (1/2h) [S.& - 4,l(t))IT (-QI + iS.J1 [s,Jj - qcl( t ) ) ]  . 

Noting that 

(-GI + isx,.-' = (R'I + s:,~)-' (-QI - 
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and taking the gradient of the above with respect to y shows that the drift (A(VR + 
VS) - A )  can be written as 

which simplifies to 

since A is assumed to be linear in its spatial argument and p = q + A .  We have 
introduced M as a short notation for a real symmetric time-dependent matrix. We may 
now write the It8 equation for the diffusion process associated with ~ ( y ,  t )  as 

Using d(X’) = 2XdX + (dX)’ gives us immediately 

Notice that from Nelson’s stochastic mechanics the natural object to study is y ,  -qcl(t) .  
The It6 equations above also show that (y, - qcl( t ) )  = 0 and further that 

f ( t )  I nh + 2fi.,,,(M - A )  

where f ( t )  = ((y - q,,(t))’) and R,,,(M - A) is the minimum eigenvalue of M - A. We 
appear to have obtained a differential equation for the variance of y r  but this is not 
quite so. 

3. Two cautionary examples 

3.1. The free particle in one dimension 

Calculating from first principles or following the scheme above leads us to the It8 
equation 

R(Qt - 1 )  
1 + R2t2 

(y, - p - u t )  dt + &de, .  d b ,  - I ( - - [ )  = 

Observe that (y) = p + ut as expected but the variance of y t  increases constantly after 
a preliminary initial decrease in accord with any quantum mechanical approach. 

3.2. The harmonic oscillator in one dimension 

Consider the Hamiltonian H = -;fi’A + i w 2 x 2 .  Calculating from first principles or 
from using the exact form of S,, (Davies 1985) we arrive at the It8 equation 
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where s = sin or and c = cos wt . This expression simplifies to the following, on setting 
ci = o/R: 

I t  is this simple example which illustrates an inherent problem. For the case of r = 1 
we have 

which shows that the variance tends to a small positive constant as t tends to infinity. 
We always have ((y - q C l ( t ) ) ' )  - h for finite t .  The main problem is that for r 
substantially different from 1 we have no definite sign for [a + (ci2 - l)cs]/(s2 + ci2c2) 
and so we have no tight control of the variance. It may become quite large for certain 
times t .  Note that one could have obtained the variance exactly from first principles. 
The purpose of this study is to try and lay the foundations for the study of problems 
which cannot be tackled in a direct way. 

4. Conclusion 

By employing the methods of classical mechanics we have exhibited the nature of the 
drift in Nelson's stochastic mechanics showing clearly how the classical velocity is built 
in for a wide range of Hamiltonians, namely 

KY,, t )  = 4,l(t) + (M - - qcl(t)). 

We have shown how one may employ the It6 equations derived to calculate the variance 
of y r .  We have shown how one ought to proceed in anharmonic potentials but have 
observed that there are problems, specifically the lack of positive definiteness in the 
matrix M - A which plays such a central role. If one considers using the semiclassical 
method of expressing the quantum mechanical propagator in terms of a Feynman path 
integral (Truman 1975) one runs into the incompatibility of the classical path used 
herein and the natural classical path from the path integral point of view. If one 
pursues the calculations further one obtains a highly unpleasant path integral which is 
not trivial to compute. I believe that the methods expounded herein would be useful 
in more general problems for small time t only. 
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